
Herbstcampus 15.09.2021, Birgit Kratz

Setzen wir erstmal einen Vertag
auf
Contract First API Entwicklung mit OpenAPI

Birgit Kratz

•Freelancing IT Consultant

•Java-Backend

•More than 20 years experience

•Co-Organizer of Softwerkskammer
in Düsseldorf and Köln (Cologne)

•Email: mail@birgitkratz.de

•Twitter: @bikratz

•Github: https://github.com/bkratz

About me

mailto:mail@birgitkratz.de
https://github.com/bkratz

Agenda

What is an API

What is a REST(ful) API

Comparison of Code-First vs Contract-First API development approach

Tools supporting the Contract-First approach

Codegeration

Demo

Experiences

What is an API

•Application Programming Interface

•“It is a type of software interface, offering a service to other pieces of software”
(Wikipedia)

•Enables communication between computers or computer programs

•A document or standard that describes how to build such a connection or
interface is called an API specification.

• Internal API, Partner/Customer API, Public/OpenSource API

https://en.wikipedia.org/wiki/Interface_(computing)
https://en.wikipedia.org/wiki/Software

What is a REST(ful) web API

•REST - Representational State Transfer

•RESTful web APIs are typically loosely based on HTTP methods to
access resources via URL-encoded parameters and the use of JSON or XML to transmit
data.

•Client-/Server communication, stateless, synchron

•Consistent access from a clients to resources of a server (a client can be a browser, a
mobile app or another program “M2M”)

•Use of HTTP protocol (GET, POST, PUT, DELETE, …, Authentication, Caching,
Compression, Status Codes)

•HATEOAS - Hypermedia As The Engine Of Application State

How to develop a (RESTful) API

Code First

Advantages

If eher already exists (legacy) code, ist is a simple
way to create an API definition and
documentation. The resulting API definition can
later turn into the single source of truth

Disadvantages

API Definition has the tendency to become
outdated if the code changes an it is not
automatically created from the code

Client implementation only possible after server
implementation has been finished and the API
definition/documentation has been published

API Definition has the tendency to represent
technical rather than domain aspects

API 
Definition

API 
Documentation

Code

manual 
or generated

generated

single
source of truth

contains API
Design

PDF 
ASCIIDoc 

HTML

manual 
or generated

API Specification First

Advantages

API Definition is driven by business/domain
aspects and is single source of truth

Automatic generation source stubs and
documentation

Server and client implementation can be done
simultaneously and independent

Disadvantages

Tools that help generating source stubs
sometimes do not cover all possibilities given by
the API specification

API 
Design

API 
Definition

API

Documentation

Sourcecode

manually 
or 

tool based

Client 
Server 
Mocks

generated
generated

PDF 
ASCIIDoc 

HTML

single
source of

truth

DDD 
Bounded Context 

Concepts
driven by

business/domain
requirements

Tools

OpenAPI Specification
https://spec.openapis.org/oas/v3.0.3

https://swagger.io/specification

https://swagger.io/docs/specification

https://spec.openapis.org/oas/v3.0.3
https://swagger.io/specification
https://swagger.io/docs/specification

Editors
Online Swagger Editor: 
https://editor.swagger.io/

IntelliJ IDEA Plugin: OpenAPI (Swagger) Editor 
https://plugins.jetbrains.com/plugin/14837-openapi-swagger-editor

https://editor.swagger.io/
https://plugins.jetbrains.com/plugin/14837-openapi-swagger-editor

Code Generator 
openapi-generator-maven-plugin
https://github.com/OpenAPITools/openapi-generator

https://github.com/OpenAPITools/openapi-generator/tree/master/modules/openapi-generator-maven-plugin

https://openapi-generator.tech/

https://github.com/OpenAPITools/openapi-generator
https://github.com/OpenAPITools/openapi-generator/tree/master/modules/openapi-generator-maven-plugin
https://openapi-generator.tech/

More Tools
https://openapi.tools/

https://openapi.tools/

Beispielprojekt: Bookshelf
Book

isbn
publishingDate
title
authors

Author
uuid
name
about

n

1

GET /books - get a list of all books

GET /books/{isbn} - get book details

POST /books - create a book

PUT /books/{isbn} - change a book

DELETE /books/{isbn} - delete a book

GET /authors - get a list of all authors

GET /authors/{uuid} - get author details

POST /authors - create an author

PUT /authors/{uuid} - change an author

DELETE /authors/{isbn} -delete an author

GET /books/author/{name} 
get all books by author name 

GET /authors/{uuid}/books

get all books for an specific author

API Definition with OpenAPI
Specification

paths:

 /books:

 get:

 summary: fetch all books

 operationId: fetchAllBooks

 responses:

 200:

 description: returns a list of books

 content:

 application/json:

 schema:

 type: array

 items:

 $ref: "#/components/schemas/Book"

 204:

 description: no books found

 401:

 $ref: “#/components/responses/Unauthorized"

Path Definitions
paths:

 /books:

 post:

 summary: add new book

 operationId: addBook

 requestBody:

 required: true

 content:

 application/json:

 schema:

 $ref: "#/components/schemas/Book"

 responses:

 201:

 description: created

 content:

 application/json:

 schema:

 $ref: "#/components/schemas/Book"

 401:

 $ref: "#/components/responses/Unauthorized"

components:

 schemas:

 Book:

 type: object

 required:

 - isbn

 properties:

 title:

 description: title of the book

 type: string

 isbn:

 type: string

 pattern: "[1-9]{13}"

 authors:

 description: names of authors

 type: array

 items:

 type: string

Schema Definitions

Demo

Other topics

API Versioning
servers:

 - url: /v1

 - url: /v2

paths:

 /books:

 get:

 operationId: fetchAllBooksV1
 responses:

 200:

 description: list of books V1

 content:

 application/json;version1:

 schema:

 type: array

 items:

 $ref: "#/components/schemas/Book"

 get:

 operationId: fetchAllBooksV2
 responses:

 200:

 description: list of books v2

 content:

 application/json;version2:

 schema:

 type: array

 items:

 $ref: "#/components/schemas/Book"

Security

components:

 securitySchemas:

 ApiKeyAuth:

 type: apiKey

 in: header

 name: X-API-Key

 OAuth2:

 type: oauth2

 flows: clientCredentials

 tokenUrl: ‘path/to/token/url’

 scopes: {}

Describing Security
security:

 - ApiKeyAuth: []

 - OAuth2: []

Applying Security

Links != HATEOAS
/books/isbn/{isbn}:

 get:
 operationId: fetchByIsbn

 parameters:
 - in: path

 name: isbn

 required: true
 schema:
 type: integer

 format: int64

 responses: …

responses:
 '201':

 description: Created

 content:
 application/json:

 schema:
 type: object

 properties:
 isbn:
 type: string

 format: “[1-9]{13}

 links:
 GetBookByIsbn:
 operationId: fetchByIsbn

 parameters:
 isbn: ‘$response.body#/isbn'

AsyncAPI 
for event-driven architecture

https://www.asyncapi.com/

Thank you

•Email: mail@birgitkratz.de

•Twitter: @bikratz

•Github: https://githib.com/bkratz

Beispielcode: https://github.com/bkratz/contract_first_bookshelf

mailto:mail@birgitkratz.de
https://githib.com/bkratz

