
API Specifications Conference 2021, Birgit Kratz

Let's work out a deal
Contract First API Development with OpenAPI

Birgit Kratz

•Freelancing IT Consultant

•Java-Backend

•More than 20 years experience

•Co-Organizer of Softwerkskammer
in Düsseldorf and Köln (Cologne)

•Email: mail@birgitkratz.de

•Twitter: @bikratz

•Github: https://github.com/bkratz

About me

mailto:mail@birgitkratz.de
https://github.com/bkratz

Agenda

What is an API

What is a REST(ful) API

Comparison of Code-First vs Contract-First API development approach

Tools supporting the Contract-First approach

Codegeration

Demo

Experiences

What is an API

•Application Programming Interface

•“It is a type of software interface, offering a service to other pieces of software”
(Wikipedia)

•Enables communication between computers or computer programs

•A document or standard that describes how to build such a connection or
interface is called an API specification.

• Internal API, Partner/Customer API, Public/OpenSource API

https://en.wikipedia.org/wiki/Interface_(computing)
https://en.wikipedia.org/wiki/Software

What is a REST(ful) web API

•REST - Representational State Transfer

•RESTful web APIs are typically loosely based on HTTP methods to
access resources via URL-encoded parameters and the use of JSON or XML to transmit
data.

•Client-/Server communication, stateless, synchron

•Consistent access from a clients to resources of a server (a client can be a browser, a
mobile app or another program “M2M”)

•Use of HTTP protocol (GET, POST, PUT, DELETE, …, Authentication, Caching,
Compression, Status Codes)

•HATEOAS - Hypermedia As The Engine Of Application State

How to develop a (RESTful) API

Code First

Advantages

If eher already exists (legacy) code, ist is a simple
way to create an API definition and
documentation. The resulting API definition can
later turn into the single source of truth

Disadvantages

API Definition has the tendency to become
outdated if the code changes an it is not
automatically created from the code

Client implementation only possible after server
implementation has been finished and the API
definition/documentation has been published

API Definition has the tendency to represent
technical rather than domain aspects

API
Definition

API
Documentation

Sourcecode

manual
or generated

generated

single
source of truth

contains API
Design

PDF
ASCIIDoc

HTML

manual
or generated

API Definition First

Advantages

API Definition is driven by business/domain
aspects and is single source of truth

Automatic generation source stubs and
documentation

Server and client implementation can be done
simultaneously and independent

Disadvantages

Tools that help generating source stubs
sometimes do not cover all possibilities given by
the API specification

API
Design

API
Definition

API
Documentation

Sourcecode

manually
or

tool based

Client
Server
Mocks

generated
generated

PDF
ASCIIDoc

HTML

single
source of

truth

DDD
Bounded Context

Concepts
driven by

business/domain
requirements

Tools

OpenAPI Specification
https://spec.openapis.org/oas/v3.0.3

https://swagger.io/specification

https://swagger.io/docs/specification

https://spec.openapis.org/oas/v3.0.3
https://swagger.io/specification
https://swagger.io/docs/specification

Editors
Online Swagger Editor: 
https://editor.swagger.io/

IntelliJ IDEA Plugin: OpenAPI (Swagger) Editor 
https://plugins.jetbrains.com/plugin/14837-openapi-swagger-editor

https://editor.swagger.io/
https://plugins.jetbrains.com/plugin/14837-openapi-swagger-editor

Code Generator
openapi-generator-maven-plugin
https://github.com/OpenAPITools/openapi-generator

https://github.com/OpenAPITools/openapi-generator/tree/master/modules/openapi-generator-maven-plugin

https://openapi-generator.tech/

https://github.com/OpenAPITools/openapi-generator
https://github.com/OpenAPITools/openapi-generator/tree/master/modules/openapi-generator-maven-plugin
https://openapi-generator.tech/

More Tools
https://openapi.tools/

https://openapi.tools/

Example project: Bookshelf
Book

isbn
publishingDate
title
authors

Author
uuid
name
about

n

1

GET /books - get a list of all books

GET /books/{isbn} - get book details

POST /books - create a book

PUT /books/{isbn} - change a book

DELETE /books/{isbn} - delete a book

GET /authors - get a list of all authors

GET /authors/{uuid} - get author details

POST /authors - create an author

PUT /authors/{uuid} - change an author

DELETE /authors/{isbn} -delete an author

GET /books/author/{name} 
get all books by author name 

GET /authors/{uuid}/books

get all books for an specific author

Demo

Other topics

API Versioning
servers:
 - url: /v1
 - url: /v2

paths:
 /books:
 get:
 operationId: fetchAllBooksV1
 responses:
 200:
 description: list of books V1
 content:
 application/json;version1:
 schema:
 type: array
 items:
 $ref: "#/components/schemas/Book"
 get:
 operationId: fetchAllBooksV2
 responses:
 200:
 description: list of books v2
 content:
 application/json;version2:
 schema:
 type: array
 items:
 $ref: "#/components/schemas/Book"

Security

components:
 securitySchemas:
 ApiKeyAuth:
 type: apiKey
 in: header
 name: X-API-Key
 OAuth2:
 type: oauth2
 flows: clientCredentials
 tokenUrl: ‘path/to/token/url’
 scopes: {}

Describing Security
security:
 - ApiKeyAuth: []
 - OAuth2: []

Applying Security

Links != HATEOAS
/books/isbn/{isbn}:
 get:
 operationId: fetchByIsbn
 parameters:
 - in: path
 name: isbn
 required: true
 schema:
 type: integer
 format: int64
 responses: …

responses:
 '201':
 description: Created
 content:
 application/json:
 schema:
 type: object
 properties:
 isbn:
 type: string
 format: “[1-9]{13}
 links:
 GetBookByIsbn:
 operationId: fetchByIsbn
 parameters:
 isbn: ‘$response.body#/isbn'

Thank you

•Email: mail@birgitkratz.de

•Twitter: @bikratz

•Github: https://githib.com/bkratz

Example code: https://github.com/bkratz/contract_first_bookshelf

mailto:mail@birgitkratz.de
https://githib.com/bkratz

