
Birgit Kratz, 27.06.2023, DWX 2023

Von Giganten, Lügnern und
Trantüten
Ein (Unit-)Test-Anti-Pattern-Märchen

Birgit Kratz
•Freelancing IT Consultant

•Java-Backend

•More than 20 years experience

•Co-Organizer of Softwerkskammer in Düsseldorf and Köln
(Cologne)

•Co-Organizer of SoCraTes-Conf Germany

•Email: mail@birgitkratz.de

•Twitter: @bikratz

•Github: https://github.com/bkratz

•Web: https://www.birgitkratz.de

About me

https://github.com/bkratz
https://www.birgitkratz.de

Photo by Richard Payette on Unsplash

https://unsplash.com/@thisusuallyworks?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/s/photos/tell?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText

Photo by form PxHere

https://pxhere.com/en/photo/738184

Photo by form PxHere

https://pxhere.com/en/photo/877623

Photo by An Min form PxHere

Test should test the desired behaviour of the
system rather than the implementation

Tests should add value to the system
(documentation, safety net, …) rather than
fulfilling some metrics (coverage, …)

https://pxhere.com/en/photographer/366822
https://pxhere.com/en/photo/1432829

Photo by Jametlene Reskp on Unsplash

Liar

An entire unit test that passes all of the test cases it has
and appears valid, but upon closer inspection it is
discovered that it doesn’t really test the intended target
at all.

https://unsplash.com/@reskp?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/s/photos/lying?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText

Photo by Jametlene Reskp on Unsplash

Liar

Example Cause Solution
passes all tests with no useful
assertions (aka: Line Hitter)

chasing test coverage

 
not practicing test-first approach

add meaningful assertions or delete
the test

test method name and test method
content do not match

refactoring, but somehow the tests
are still green 
 
not practicing test-first approach

keep test method names and test
method content in sync

https://unsplash.com/@reskp?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/s/photos/lying?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText

The Enumerator

Photo by form PxHere

A unit test with each test case method name is
only an enumeration, i.e. test1, test2, test3. As
a result, the intention of the test case is
unclear, and the only way to be sure is to read
the test case code and pray for clarity.

https://pxhere.com/en/photo/1149875

The Enumerator

Photo by form PxHere

Example Cause Solution
test method names are the same
except for a number at the end

often in this comes in combination
with The Liar

trying to test the same method with
different inputs

being not creative enough or just lazy
to find good test method names

rename test methods to represent
the indicate the input and expected
output 
 
possibly use parameterized tests

https://pxhere.com/en/photo/1149875

Photo by Aldo Delara on Unsplash

The Happy 
Path

A unit test that only tests the expected
behaviour, not testing any boundaries or
exceptions. The anti-pattern here is when the
developer stops at happy path tests.

https://unsplash.com/@okvisuals?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/s/photos/path?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText

Photo by Aldo Delara on Unsplash

The Happy 
Path

Example Cause Solution
only one test per unit

test only trying to prove the
correctness of the business logic/
algorithm

not practicing test-first approach

not testing boundaries

start using test-first and start with
testing the boundaries, using some
out of boundary values 
 
consider using Mutation Testing

consider using Property Based
Testing

https://unsplash.com/@okvisuals?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/s/photos/path?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText

Photo by Kitera Dent on Unsplash

Excessive Setup

A test that requires a lot of work setting up in order to
even begin testing. Sometimes several hundred lines of
code is used to setup the environment for one test, with
several objects involved, which can make it difficult to
really ascertain what is tested due to the “noise” of all of
the setup going on.

https://unsplash.com/@kitera?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/s/photos/castle?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText

Photo by Kitera Dent on Unsplash

Excessive Setup

Example Cause Solution
lots of mocked dependencies 
 
lots of code to form a scenario

always set up the whole application
context, instead of using only what is
needed

tested class or method do too much, 
poor separation of concerns

tests and code are highly coupled 
 
not practicing test-first approach 
 
not practicing object calisthenics

start improving abstraction and
separation of concerns 
 
practice test-first 
 
practice object calisthenics

https://unsplash.com/@kitera?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/s/photos/castle?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText

Photo by form PxHere

Giant

A unit test that, although it is validly testing the object
under test, can span thousands of lines and contain
many many test cases. This can be an indicator that the
system under tests is a God Object

https://pxhere.com/en/photo/942286

Photo by form PxHere

Giant

Example Cause Solution
test with many lines of code, it takes
ages scrolling the test and nothing
can be found

tests with comment lines separating
different sections within the test
class

its easy to put everything in one
class to keep dependencies low

a util class to collect all util methods
used within the program, no matter
where they are used

refactoring the tested class to
several classes with separate
concerns

practice object calisthenics

https://pxhere.com/en/photo/942286

Photo by Sebastian Herrmann on Unsplash

Mockery

Sometimes mocking can be good, and handy. But
sometimes developers can lose themselves and in their
effort to mock out what isn’t being tested. In this case, a
unit test contains so many mocks, stubs, and/or fakes
that the system under test isn’t even being tested at all,
instead data returned from mocks is what is being
tested.

https://unsplash.com/@herrherrmann?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/s/photos/chameleon?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText

Photo by Sebastian Herrmann on Unsplash

Mockery

Example Cause Solution
lots of dependencies that need
mocking to isolate the code to test

even partially mocking the class
under test

class under test contains methods
that do not really belong there and
therefore have to be mocked

tests and code are highly coupled

see: Excessive Setup

possibly refrain from using mocking
frameworks and write your own
Mocks, Stubs, Fakes, Test-Doubles
(which will make you think about
mocking)

refactoring to less dependencies
using abstraction and separation of
concerns

https://unsplash.com/@herrherrmann?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/s/photos/chameleon?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText

Photo by form PxHere

Inspector

A unit test that violates encapsulation in an effort to
achieve 100% code coverage, but knows so much
about what is going on in the object that any attempt to
refactor will break the existing test and require any
change to be reflected in the unit test.

https://pxhere.com/en/photo/623791

Photo by form PxHere

Inspector

Example Cause Solution
making methods public, just to be
able to test them 
 
writing getter-method that is only
ever used by the test 
use reflection to get access to
private fields

not practicing test-first approach 

chasing test coverage

poor use of dependency injection

start improving abstraction and
separation of concerns by
refactoring methods out to another
object

never compromise encapsulation for
tests 
instead design for testability 

https://pxhere.com/en/photo/623791

Photo by form PxHere

Local Hero

A test case that is dependent on something specific to
the development environment it was written on in order
to run. The result is the test passes on development
boxes, but fails when someone attempts to run it
elsewhere.

https://pxhere.com/en/photo/629601

Photo by form PxHere

Local Hero

Example Cause Solution
using OS specific settings (i.e. line
breaks) in tests

relying on some tool installed locally 
(databases, …)

being unaware of build on different
machines or OS

being unaware of usage of a local
tool

for instance: consistently use UTF-8

possibly use tool libraries instead of
the tool itself

use In-Memory databases or
Testcontainers

https://pxhere.com/en/photo/629601

Photo by engin akyurt on Unsplash

The Hidden Dependency

A close cousin of The Local Hero, a unit test that requires
some existing data to have been populated somewhere
before the test runs. If that data wasn’t populated, the
test will fail and leave little indication to the developer
what it wanted, or why… forcing them to dig through
acres of code to find out where the data it was using
was supposed to come from.

https://unsplash.com/@enginakyurt?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/s/photos/unhealthy?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText

Photo by engin akyurt on Unsplash

The Hidden Dependency

Example Cause Solution
tests reads from a database that is
expected to be filled with data

test reads a file that is expected to
be present

tests that do not prepare their
needed data themselves but rather
assume, that certain data are
prepared for them

tests should take care of the needed
data setup itself 

https://unsplash.com/@enginakyurt?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/s/photos/unhealthy?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText

Photo by form PxHere

The Loudmouth

A unit test (or test suite) that clutters up the console with
diagnostic messages, logging messages, and other
miscellaneous chatter, even when tests are passing.
Sometimes during test creation there was a desire to
manually see output, but even though it’s no longer
needed, it was left behind.

https://pxhere.com/en/photo/887135

Photo by form PxHere

The Loudmouth

Example Cause Solution
“debugging” with log messages debug log messages within the test

might have been introduced while
writing test for a difficult problem, or
while inspecting a tool used.

Once the solution was found, these
log messages were never removed.

do all the necessary logging in the
production code

avoid additional logging from the test
code

https://pxhere.com/en/photo/887135

Photo by Carrie Borden on Unsplash

The Slow Poke
A unit test that runs incredibly slow. When developers
kick it off, they have time to go to the bathroom, grab a
smoke, or worse, kick the test off before they go home
at the end of the day.

https://unsplash.com/@carrie_borden?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/s/photos/snail?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText

Photo by Carrie Borden on Unsplash

The Slow Poke

Example Cause Solution
testing a time-consuming algorithm
with all possible inputs

asynchronous test that waits for an
answer

algorithm need lots of CPU-power 
 
in case of asynchronous setup,
timeout are too long if another
system does not answer

consider using less input data
covering the boundaries and one or
two happy paths

if making these tests faster is not
possible, then run them less often
(after careful consideration)

https://unsplash.com/@carrie_borden?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/s/photos/snail?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText

Photo by Nick Fewings on Unsplash

The Sequencer

A unit test that depends on items in an unordered list
appearing in the same order during assertions.

https://unsplash.com/@jannerboy62?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/s/photos/sequence?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText

Photo by Nick Fewings on Unsplash

The Sequencer
Example Cause Solution

reading data from a database or from
a list (that is not guaranteed to be
sequential)

order of items may differ on different
machines 
 

make test not depending on the
order of inputs or results

https://unsplash.com/@jannerboy62?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/s/photos/sequence?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText

Photo by Mutzii on Unsplash

The Generous
Leftovers

An instance where one unit test creates data that is
persisted somewhere, and another test reuses the data
for its own devious purposes. If the “generator” is ran
afterward, or not at all, the test using that data will
outright fail.

https://unsplash.com/@mutzii?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/s/photos/pizza?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText

Photo by Mutzii on Unsplash

The Generous
Leftovers

Example Cause Solution
unit test framework usually runs tests
in random order 
 
flaky tests

design tests so that they never
depend on one another or on a
certain order to be run

https://unsplash.com/@mutzii?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/s/photos/pizza?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText

Other…?

Photo by Johannes Plenio on Unsplash

https://unsplash.com/@jplenio?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/s/photos/fairytale?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText

• James Carr: 
https://web.archive.org/web/20100105084725/http://blog.james-carr.org/
2006/11/03/tdd-anti-patterns/

• Dave Farley: 
https://www.youtube.com/watch?v=UWtEVKVPBQ0

• Yegor Bugayenko: 
https://www.yegor256.com/2018/12/11/unit-testing-anti-patterns.html  
https://www.youtube.com/watch?v=KiUb6eCGHEY

Some ressources

https://web.archive.org/web/20100105084725/http://blog.james-carr.org/2006/11/03/tdd-anti-patterns/
https://web.archive.org/web/20100105084725/http://blog.james-carr.org/2006/11/03/tdd-anti-patterns/
https://www.youtube.com/watch?v=UWtEVKVPBQ0
https://www.yegor256.com/2018/12/11/unit-testing-anti-patterns.html
https://www.youtube.com/watch?v=KiUb6eCGHEY

Questions?

Thank you

•Email: mail@birgitkratz.de

•Twitter: @bikratz

•Mastodon: @birgitkratz@jvm.social

•Github: https://github.com/bkratz

•Web: https://www.birgitkratz.de

Slides:

https://www.birgitkratz.de/uploads/DWX_June_2023_TestAntipattern.pdf

mailto:birgitkratz@jvm.social
https://github.com/bkratz
https://www.birgitkratz.de
http://www.birgitkratz.de/uploads/DWX_June_2023_TestAntipattern.pdf

