
#DWX 22, 05.07.2022, Birgit Kratz

Alle Tests grün? Oh no!!!
Warum es manchmal gut ist, wenn ein Test rot wird.



Birgit Kratz

•Freelancing IT Consultant


•Java-Backend


•More than 20 years experience


•Co-Organizer of Softwerkskammer in 
Düsseldorf and Köln (Cologne)


•Email: mail@birgitkratz.de


•Twitter: @bikratz


•Github: https://github.com/bkratz


•Web: https://www.birgitkratz.de

About me

https://github.com/bkratz
https://www.birgitkratz.de


Agenda

What is Mutation Testing and how does it work


Demo


Tips



First some questions



Even with 100% code 
coverage…

… can you tell how good and 
reliable your tests are?



“Program testing can be used to 
show the presence of bugs, but 
never to show their absence!” 

― Edsger W. Dijkstra



So how can we check

whether our tests are

good and reliable?



Mutation Testing



How it works



Tested Code Base

How it works



Tested Code Base

How it works



MutantCode changeTested Code Base

How it works



Run testsMutantCode changeTested Code Base

How it works



Mutant killed 
(at least one 
failing test)

Run testsMutantCode changeTested Code Base

How it works



Mutant survived 
(all tests still 

green)

Mutant killed 
(at least one 
failing test)

Run testsMutantCode changeTested Code Base

How it works



Mutant survived 
(all tests still 

green)

Mutant killed 
(at least one 
failing test)

Run testsMutantCode changeTested Code Base

How it works

Repeat



Which kind of Mutants are 
we talking about?



Conditional Boundary 
Mutator

Original Mutant
< <=

<= <
> >=

>= >



Negate Conditionals 
Mutator

Original Mutant
== !=
!= ==
> <=

>= <
<= >
< >=



Increment Mutator

Original Mutant
i++ i—
i— i++



Original Mutant
return -i return i

Invert Negatives Mutator
inverts negation of integer and floating point numbers



Math Mutator
Original Mutant

+ -
* /
& |
>> <<
… …



Many More
Void Method Call Mutator - removes calls to void methods 
 
Empty Returns Mutator - replaces return values with an ‘empty’ value 
 
False Returns Mutator - always returns false for a primitive boolean return value 
 
True Returns Mutator - always returns true for a primitive boolean return value 
 
Null Returns Mutator - replaces return values with null 
 
Primitive Returns Mutator - replaces int, short, long, char, float and double return values with 0 
 
Constructor Call Mutator - replaces constructor calls with null values 

still more…



What kind of problems can 
be detected?



Poorly chosen or missing 
test data



Ambiguities in code base 
Logical errors



Missing test coverage



What kind of problems can 
not be solved?



Equivalent Mutation
The mutants in this set cannot be killed because they are equivalent to the original 
program. No possible test input exists that can distinguish their behaviour from that 
of the original program.

Original Mutant



Stubborn Mutation

The mutants in this set can be killed. Each stubborn mutant does have a test input 
that distinguishes its behaviour from that of the original program. 
However, none of these distinguishing test inputs has yet been found.



Report Example



DEMO 
with Java and PIT
(https://github.com/hcoles/pitest)

https://github.com/hcoles/pitest


Disadvantages of Mutation 
testing

• Can be very time consuming
• Cannot detect/avoid equivalent mutations, since the resulting mutant behaves 

in exactly the same way as the original
• Not usable for Black Box Testing



Cost of Mutation Testing
Let’s assume we have:
• a code base with 300 Java classes
• 10 test cases for each class
• on average, each test case requires 0.2 seconds for its execution
• the total test suite execution costs 300 * 10 * 0,2 = 600 seconds (10 minutes)

Let’s assume we have, on average, 20 mutants per each class.
The total cost of mutation analysis is 300 * 10 * 0,2 * 20 = 12000 seconds (3h 20 min)



How to reduce this cost?



Reduce number of used 
Mutations



Reduce number of Classes to 
apply Mutation Testing



Incremental Analysis



Extreme Mutation Strategy
Article: Will My Tests Tell Me If I Break This Code? 

https://arxiv.org/pdf/1611.07163.pdf

Implementierung für PIT: pit-descartes

https://arxiv.org/pdf/1611.07163.pdf
https://arxiv.org/pdf/1611.07163.pdf
https://github.com/STAMP-project/pitest-descartes


Mutation Test Tools

https://github.com/theofidry/awesome-mutation-testing

https://github.com/theofidry/awesome-mutation-testing


Try it!
✓ Try it again 
✓ Start small 
✓Write more tests 
✓ Get familiar with reported issues and how to solve them 
✓ Configure it to your needs 
✓ Start with critical components 
✓ Don’t use all Mutators all the time 
✓ Integrate into CI pipeline 
✓ Don’t strive for 100%



Questions?



Thank you

•Email: mail@birgitkratz.de


•Twitter: @bikratz


•Github: https://github.com/bkratz

Sample code:


https://github.com/bkratz/AdventOfCode-2021/tree/main/day03-java


https://github.com/bkratz/MutationTesting-aoc2021-d03-akaritakai


https://github.com/bkratz/MutationTesting-aoc2021-d03-jerchende

https://github.com/bkratz/AdventOfCode-2021/tree/main/day03-java
https://github.com/bkratz/MutationTesting-aoc2021-d03-akaritakai
https://github.com/bkratz/MutationTesting-aoc2021-d03-jerchende

