
#BaselOne21 baselone.ch



#BaselOne21, 21.10.2021, Birgit Kratz

Alle Tests grün? Oh no!!!
Warum es manchmal gut ist, wenn ein Test rot wird.



Birgit Kratz

•Freelancing IT Consultant


•Java-Backend


•More than 20 years experience


•Co-Organizer of Softwerkskammer 
in Düsseldorf and Köln (Cologne)


•Email: mail@birgitkratz.de


•Twitter: @bikratz


•Github: https://github.com/bkratz

About me



Agenda

What is Mutation testing

Why use Mutation testing

How to do Mutation testing

How to use Mutation testing results

Demo



First some questions
Who of you is writing (unit) test? 

Who of you is writing (unit) tests first? 

Do you have a target number for code coverage? 

Do you sometimes fake code coverage?



Even with 100% code 
coverage…

… can you tell how good and 
reliable your tests are?

Traditional test coverage (i.e line, statement, branch, etc.) measures only which code 
is executed by your tests. It does not check that your tests are actually able 
to detect faults in the executed code. It is therefore only able to identify code that is 
definitely not tested.
(https://pitest.org)

https://pitest.org


What is Mutation testing
Mutation testing is conceptually quite simple.

Faults (or mutations) are automatically seeded into your code, then your tests are run. If your tests 
fail then the mutation is killed, if your tests pass then the mutation lived/survived.

The quality of your tests can be gauged from the percentage of mutations killed.

(https://pitest.org)

Mutation testing … is used to design new software tests and evaluate the quality of existing 
software tests. Mutation testing involves modifying a program in small ways. Each mutated 
version is called a mutant and tests detect and reject mutants by causing the behaviour of the 
original version to differ from the mutant. This is called killing the mutant. … Mutants are based on 
well-defined mutation operators that either mimic typical programming errors … The purpose is to 
help the tester develop effective tests or locate weaknesses in the test data used for the 
program… Mutation testing is a form of white-box testing.

(https://en.wikipedia.org/wiki/Mutation_testing)

https://pitest.org
https://en.wikipedia.org/wiki/White-box_testing


In simple words
1. To do Mutation testing you need a tested code base

2. All tests must be green

3. Introduce one small change to your codebase (create a mutant)

4. Run all the tests again

5. If there is at least one red test result, the mutant was killed (which is what you want),  
otherwise the mutant survived (which indicates a problem in either your codebase or your tests)



Mutation Operators



Conditional Boundary 
Mutator

Original conditional Mutated conditional

< <=

<= <

> >=

>= >



Increment Mutator
Original Mutated

i++ i—

i— i++

Original Mutated

return -i return i

Invert Negatives Mutator
inverts negation of integer and floating point numbers



Math Mutator
Original Mutated

+ -

* /

& |

>> <<

… …



Negate Conditionals 
Mutator

Original conditional Mutated conditional

== !=

!= ==

> <=

>= <

<= >

< >=



Many More
Void Method Call Mutator - removes calls to void methods 
 
Empty Returns Mutator - replaces return values with an ‘empty’ value 

False Returns Mutator - always returns false for a primitive boolean return value 

True Returns Mutator - always returns true for a primitive boolean return value 

Null Returns Mutator - replaces return values with null 

Primitive Returns Mutator - replaces int, short, long, char, float and double return values with 0 

Constructor Call Mutator - replaces constructor calls with null values


And more…



What kind of problems can 
be detected?

Poorly chosen or missing test data
Ambiguities in code base (logical errors)
Missing test coverage



Equivalent Mutation

The mutants in this set cannot be killed because they are equivalent to the original 
program. No possible test input exists that can distinguish their behaviour from that 
of the original program.



Mutation Score
The mutation score is defined as the percentage of killed mutants with the total 
number of mutants.

Mutation Score = (Killed Mutants / Total number of Mutants) * 100



Mutation Test Tools

https://github.com/theofidry/awesome-mutation-testing

https://github.com/theofidry/awesome-mutation-testing


Demo 
with Java and PIT
(https://github.com/hcoles/pitest)

https://github.com/hcoles/pitest


Disadvantages of Mutation 
testing

• Can be very time consuming
• Cannot detect/avoid equivalent mutations, since the resulting mutant behaves 

in exactly the same way as the original
• Not usable for Black Box Testing



Cost of Mutation Testing
Let’s assume we have:
• a code base with 300 Java classes
• 10 test cases for each class
• on average, each test case requires 0.2 seconds for its execution
• the total test suite execution costs 300 * 10 * 0,2 = 600 seconds (10 minutes)

Let’s assume we have, on average, 20 mutants per each class.
The total cost of mutation analysis is 300 * 10 * 0,2 * 20 = 12000 seconds (3h 20 min)

But there are ways to reduce theses costs



Questions?



Thank you

•Email: mail@birgitkratz.de


•Twitter: @bikratz


•Github: https://github.com/bkratz

Sample code:


https://github.com/bkratz/MutationTestingSimpleMath


https://github.com/bkratz/MutationTestingWithConwayCubes

https://github.com/bkratz/MutationTestingSimpleMath
https://github.com/bkratz/MutationTestingWithConwayCubes

